Реле контроля уровня жидкости ADC-0311

Инструкция по установке и эксплуатации

Назначение устройства

Прибор предназначен для контроля уровня жидкости в резервуарах, накопительных емкостях, отстойниках и т.п. при условии, что электропроводность рабочей жидкости достаточно велика.

Контроль уровня жидкости осуществляется при помощи кондуктометрических датчиков, которые устанавливаются пользователем на контрольных отметках. Датчики являются самостоятельными изделиями и не входят в комплект поставки.

Допускается использование датчиков с другим принципом работы (например, поплавковые), если выход датчика имеет тип «сухой контакт»

Устройство позволяет осуществлять контроль уровня и управлять оборудованием при помощи встроенного реле.

Таблица 1. Технические характеристики.

Напряжение питания прибора (сеть 50 Гц)	В	110 –265
Максимальное коммутируемое напряжение	В	250
Допустимое сопротивление жидкости между датчиками	кОм	0 - 100
Напряжение на датчике (переменное 10 Гц)	В	3
Ток через датчики, не более	мА	0.1
Диапазон рабочих температур	С	-5+45
Степень защиты		IP20
Относительная влажность	%	20 - 80
Габаритные размеры (Д*Ш*В)	MM	95*53*66
Вес, не более	г	140

Схема включения и монтаж

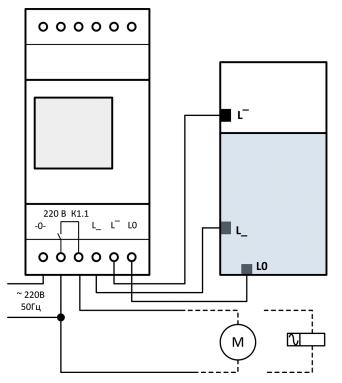


Рис.1. Схема подключения.

Важно! Для дополнительной защиты от поражения электрическим током при неисправности обязательно использование устрой-

ства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА в цепи питания устройства.

Подключение должно выполняться квалифицированным электриком.

Назначение клемм

~220V - питание устройства (фазный провод).

0 - питание устройства (нулевой провод).

К1.1 - клемма контактавстроенного реле.

LO - клемма для подключения датчика LO. При использовании емкости из металла в качестве LO можно использовать корпус емкости.

L – клемма для подключения датчика L.

L_ – клемма для подключения датчика L_.

Максимальное коммутируемое напряжение для встроенного реле - 250VAC. Максимальная коммутируемая мощность - 0.5 кВт. Для управления более мощным двигателем необходимо использовать магнитный пускатель.

Схема подключения с использованием 3-х кондуктометрических датчиков приведена на рис.1. Для правильной работы устройства необходимо установить датчик L0 в самой нижней части сосуда. Датчик L_ устанавливается выше L0 на высоте нижнего допустимого уровня жидкости. Датчик L_ устанавливается L_ на высоте верхнего допустимого уровня жидкости. При погружении датчика L_ (или L¹) в жидкость сопротивление между парой датчиков L0 - L_ (или L0 – L¹) уменьшается и устройство определяет, что уровень жидкости достиг соответствующей отметки.

Вместо кондуктометрических датчиков можно использовать датчики с другим принципом работы при условии, что последние имеют выход типа «сухой контакт». При замене один контакт датчика подключается к клемме L0 устройства, второй - к клемме для заменяемого электрода ($L_{\rm u}$ или $L_{\rm u}$).

Установка датчика LO необходима только в том случае, если используется хотя бы один из датчиков L_{-} , L_{-}^{-} кондуктометрического

Работа устройства

По умолчанию экран устройства отображает основное меню (см. табл. 2). На дисплей выводится текущее состояние встроенного реле. Индикация Р означает, что контакты реле замкнуты (насос включен). Индикация Р означает, что контакты реле разомкнуты (насос выключен). Если жидкость находится на уровне датчика L или выше - светится индикатор 4 (см. табл. 2). Если жидкость находится на уровне датчика L или выше - дополнительно светится индикатор 2. Если устройство ведет отсчет времени задержки - на экран выводится остаток времени в секундах.

Таблица 2. Основное меню устройства.

Режимы работы устройства

Устройство может работать в следующих режимах:

1 - Режим откачивания. В этом режиме устройство включает насос после достижения жидкостью датчика верхнего уровня L^- . Включение производится с задержкой t^- (от 1 до 990 секунд). Задержка позволяет избежать ложных включений насоса при случайном попадании жидко-

сти на датчик (например, брызг). Откачивание жидкости происходит до осушения датчика нижнего уровня $L_.$ Отключение насоса происходит с задержкой t (от 1 до 990 секунд).

2 - Режим докачивания. В этом режиме устройство включает насос при осушении датчика нижнего уровня $L_$. Включение насоса происходит с задержкой $t_$. Насос отключается при достижении жидкостью датчика верхнего уровня $L_$. Отключение насоса происходит с задержкой $t_$.

Настройка устройства

Перед началом эксплуатации необходимо выполнить настройку устройства.

Для настройки устройства необходимо выбрать режим работы устройства, настроить чувствительность датчиков и установить задержки включения/выключения насоса.

Выбор режима работы

Меню выбора режима работы вызывается из основного меню при одновременном нажатии кнопок $\mathbf{«-/t_-}$ » и $\mathbf{«+/t^-}$ ». В данном меню верхний индикатор отображает символы $\mathbf{«-P-}$ », а нижний индикатор - мигающее значение (см. табл. 3). Это значение определяет режим работы устройства. Нажатие кнопок $\mathbf{«-/t_-}$ » или $\mathbf{«+/t^-}$ » позволяет установить необходимый режим работы. При отсутствии действий в течении 60 секунд или нажатии кнопки $\mathbf{«Bыход»}$, устройство возвращается в основное меню.

Таблица 3. Меню выбора режима работы.

Настройка чувствительности датчиков

Меню настройки чувствительности датчиков вызывается из меню выбора режима работы при одновременном нажатии кнопок $(-,t_*)$ и $(+,t_*)$. В данном меню на дисплей выводится перечень датчиков уровня ($(-,t_*)$) (см. табл. 4). Цифры в правом столбце - текущее значение чувствительности соответствующего датчика. Нажатие кнопок $(-,t_*)$ или $(-,t_*)$ позволяет редактировать значение, которое в данный момент мигает. Одновременном нажатие кнопок $(-,t_*)$ и $(-,t_*)$ позволяет перейти к редактированию чувствительности следующего датчика. При нажатии кнопки $(-,t_*)$ потсутствии действий в течении 60 секунд устройство переходит в основное меню.

Таблица 4. Меню настройки чувствительности датчиков.

Важно. Для правильной настройки чувствительности необходимо сначала наполнить емкость жидкостью так, чтобы верхний датчик L¯ был погружен в жидкость. Диапазон значений чувствительности датчика - от 0 (самая низкая чувствительность) до 9 (самая высокая чувствительность). В меню настройки чувствительности датчиков установите требуемое значение для L¯. Чувствительность необходимо увеличивать до уверенного срабатывания датчика (лучше с небольшим запасом). На срабатывание датчика указывает зажигание точки индикатора. Не стоит устанавливать чувствительность намного больше необходимой. Это может привести к ложным срабатываниям датчика в сухом состоянии.

Далее необходимо уменьшить уровень так, чтобы только датчик L_ был погружен в жидкость и повторить все действия по настройке чувствительности уже для L_.

Если в качестве кондуктометрического датчика используется датчик иного типа, следует установить чувствительность датчика 0.

С правильно настроенными значениями чувствительности индикаторы датчиков должны загораться, если жидкость достигает уровня соответствующего датчика. При осушении датчиков индикаторы должны гаснуть.

Настройка задержки включения насоса t

Меню настройки задержки включения насоса вызывается из основного меню при нажатии кнопки $\mathbf{*+/t}^-$ ». В данном меню верхний индикатор отображает символы $\mathbf{*t}^-$ » а нижний индикатор - мигающее значение (см. табл. 5). Это значение определяет текущее значение задержки \mathbf{t}^- в секундах. Редактировать значение можно нажатиями кнопок $\mathbf{*-/t}_-$ » или $\mathbf{*+/t}^-$ ». При отсутствии действий в течении 60 секунд или нажатии кнопки «Выход», устройство возвращается в основное меню.

Таблица 5. Меню настройки задержки включения насоса.

Настройка задержки выключения насоса t_

Меню настройки задержки выключения насоса вызывается из основного меню при нажатии кнопки «-/t_». В данном меню верхний индикатор отображает символы «t_» а нижний индикатор - мигающее значение (см. табл. 6). Это значение определяет текущее значение задержки t_ в секундах. Редактировать значение можно нажатиями кнопок «-/t_» или «+/t¯». При отсутствии действий в течении 60 секунд или нажатии кнопки «Выход», устройство возвращается в основное меню.

Таблица 6. Меню настройки задержки выключения насоса.

Категорически запрещается

- Проводить любые работы по монтажу (демонтажу) устройства, если на устройство подано напряжение.
- Самостоятельно вскрывать или ремонтировать устройство.
- Эксплуатировать устройство с недопустимыми значениями нагрузки, температуры и влажности.
- Эксплуатировать устройство во взрывоопасных помещениях.
- Эксплуатировать устройство в агрессивных средах с содержанием в воздухе паров кислот, щелочей и др.
- Допускать попадание в устройство влаги, посторонних предметов, насекомых.
- Управлять прибором влажными руками.

Гарантийные обязательства

Гарантийный срок эксплуатации прибора - 36 месяцев. Гарантийные обязательства прекращаются в случаях:

- наличия следов вскрытия и самостоятельного ремонта;
- наличия механических повреждений корпуса, клемм, признаках неправильного монтажа;
- наличия признаков эксплуатации прибора в условиях, не соответствующих требованиям настоящей инструкции.